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Abstract
1. Close-kin mark–recapture (CKMR) is a method for estimating abundance and vital 

rates from kinship relationships observed in genetic samples. CKMR inference 
only requires animals to be sampled once (e.g., lethally), potentially widening the 
scope of population-level inference relative to traditional monitoring programs.

2. One assumption of CKMR is that, conditional on individual covariates like age, all 
animals have an equal probability of being sampled. However, if genetic data are 
collected opportunistically (e.g., via hunters or fishers), there is potential for spa-
tial variation in sampling probability that can bias CKMR estimators, particularly 
when genetically related individuals stay in close proximity.

3. We used individual-based simulation to investigate consequences of dispersal lim-
itation and spatially biased sampling on performance of naive (nonspatial) CKMR 
estimators of abundance, fecundity, and adult survival. Population dynamics ap-
proximated that of a long-lived mammal species subject to lethal sampling.

4. Naive CKMR abundance estimators were relatively unbiased when dispersal was 
unconstrained (i.e., complete mixing) or when sampling was random or subject to 
moderate levels of spatial variation. When dispersal was limited, extreme vari-
ation in spatial sampling probabilities negatively biased abundance estimates. 
Reproductive schedules and survival were well estimated, except for survival 
when adults could emigrate out of the sampled area. Incomplete mixing was read-
ily detected using Kolmogorov–Smirnov tests.

5. Although CKMR appears promising for estimating abundance and vital rates with 
opportunistically collected genetic data, care is needed when dispersal limita-
tion is coupled with spatially biased sampling. Fortunately, incomplete mixing is 
easily detected with adequate sample sizes. In principle, it is possible to devise 
and fit spatially explicit CKMR models to avoid bias under dispersal limitation, 
but development of such models necessitates additional complexity (and possibly 
additional data). We suggest using simulation studies to examine potential bias 
and precision of proposed modeling approaches prior to implementing a CKMR 
program.
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1  | INTRODUC TION

Ecologists and natural resource professionals often require estimates 
of abundance and vital rates (e.g., fecundity, survival) to investigate 
population-level processes and to manage fish and wildlife popu-
lations. Close-kin mark–recapture (CKMR) is a recently developed 
technique for estimating abundance and demography of animal pop-
ulations from the frequency of kinship relationships (e.g., parent–
offspring, half-siblings) observed in genetic samples (Bravington, 
Skaug, & Anderson, 2016; Skaug, 2001). In essence, offspring “mark” 
their parents and the frequency with which parents are encountered 
can be used to estimate adult abundance. Frequencies of half-sibling 
pairs (HSPs) can also be used to estimate abundance, and provide 
additional information about adult survival since a parent must have 
survived from the older sibling’s birth date to the younger sibling's 
birth date in order to have reproduced (Bravington, Skaug, et al., 
2016). Precision of estimates is considerably improved if ages can be 
estimated or inferred at the time of sampling (e.g., from age–length 
relationships). If data are rich enough, reproductive schedules can 
also be estimated.

As opposed to standard capture–recapture, which requires 
multiple encounters of the same animal, CKMR estimation can be 
conducted with animals that have only been encountered once. It 
is thus a potential “holy grail" for fish and wildlife agencies, who 
frequently have access to samples of harvested animals, often at a 
fraction of the cost of intensive marking and subsequent recapture 
operations necessary for traditional mark–recapture or mark–re-
covery modeling. Thus far, CKMR has been successfully applied to 
salmon (Rawding, Sharpe, & Blankenship, 2014), tuna (Bravington, 
Grewe, & Davies, 2016), shark (e.g., Hillary et al., 2018), and brook 
trout (Ruzzante et al., 2019) populations, but there is considerable 
interest in applying it to other marine, fresh water, and terrestrial 
animal populations.

According to Bravington, Skaug, et al. (2016), one requirement 
for CKMR estimation is that “…the event of an adult's being sampled 
should be independent of the number of its offspring sampled, con-
ditional on covariates.” If sampling is spatially biased, and if parents 
and offspring are close together, this independence assumption is 
violated unless spatial location is explicitly modeled (see Discussion). 
For instance, many terrestrial mammals disperse a limited distance 
from their place of birth. If sampling is concentrated in a particu-
lar area or set of areas, the expected number of related animals in 
the sample may be higher than if animals were sampled with equal 
probability (hereafter, “random sampling”). If sampling is opportu-
nistic, some level of spatial bias will often occur since fishers and 
hunters frequently concentrate their efforts in areas of high abun-
dance or easy access (e.g., close to roads; Diefenbach et al., 2005). 
However, to our knowledge no one has investigated the degree of 
bias in CKMR estimators in such a situation. The closest example 

is by Davies, Bravington, and Thomson (2017), who suggested po-
tential for considerable bias when applying naive CKMR estimators 
to Atlantic bluefin tuna populations. They concluded that unbiased 
estimation required adequate sampling in different spawning and 
nursery areas and use of CKMR models that explicitly account for 
spatial variation in stock structure.

Although it is certainly possible in principle to devise and fit spa-
tially explicit CKMR models which should avoid bias (see Discussion), 
there is likely to be considerable additional modeling complexity en-
tailed as well as additional data requirements. Thus, it may be pref-
erable to fit the much simpler naive nonspatial CKMR models, even 
if there is a small price to pay in potential bias. Simulations can help 
determine in advance whether such bias is likely to be bad enough 
to justify the development of spatial models, collection of additional 
data, and/or to change the sampling scheme.

In the present paper, we investigate the robustness of CKMR es-
timators when dispersal is limited and there is spatial bias in sampling 
probabilities. In particular, we use spatially explicit, individual-based 
simulation to record pedigrees and event histories (birth, death, lo-
cation) under different movement and sampling scenarios applied to 
a long-lived mammal population. We then investigate bias of CKMR 
estimators for abundance, survival, and relative fecundity at age that 
ignore spatial information. We also assess the power of goodness-of-
fit tests to detect lack of mixing. The remainder of the paper is or-
ganized as follows. First, we provide a brief review of CKMR models 
and their basic assumptions. Second, we describe diagnostics to help 
ecologists detect dispersal limitation. Next, we describe our simu-
lation study in further detail. After reporting results, we close with 
thoughts on applying nonspatial CKMR models to populations with 
dispersal limitation and spatially biased sampling.

2  | MATERIAL S AND METHODS

2.1 | Notation and canonical CKMR models

Let i and j denote two individuals sampled from a population, and 
let Yijk be a binary random variable indicating whether animals i  
and j have a particular kinship relationship k (e.g., mother–offspring 
pair). For ease of exposition, we assume kinship relationships are 
determined with certainty—modifications will often be needed in 
real-world applications, especially for half-siblings. Under lethal 
sampling, we write the probability of a particular kinship relationship 
as P[Yijk=1|zi,zj] to emphasize that the probability is conditional on 
covariate vectors zi and zj gathered for the two animals. Common 
covariates in canonical CKMR models include year of sampling (ti,tj)  
and year of birth (bi,bj) if ages can be obtained reliably; in many ap-
plications, ages are either imprecise or only a proxy such as length 
is available (e.g., for fish), but we ignore that complication here. In 

K E Y W O R D S

abundance estimation, incomplete mixing, sampling bias, spatial heterogeneity



5560  |     CONN et al.

the following, we shall sometimes refer to P[Yijk=1|zi,zj] as Pijk for 
brevity. We follow the convention of Bravington, Skaug, et al. (2016) 
in using expected relative reproductive output (ERRO) to formulate 
expressions for Pijk (for an alternate formulation, see Skaug, 2017). 
Here, ERRO is defined as the expected reproductive output of in-
dividual i  relative to the population. For example, if k=1 denotes 
mother–offspring pair, the probability that a sampled female i is the 
mother of j can be written as

where E[Ri(bj)|zi,zj] is the expected reproductive output of female i  in 
the year of j’s birth, and E[R+(bj)] is the total expected reproductive 
output of the population in year bj (Bravington, Skaug, et al., 2016). 
Half-sibling formulations for Pijk are similar, though they necessarily 
involve the probability of a common parent producing offspring at bi 
and bj and surviving from bi→bj. Note that the formulae for computing 
ERRO can vary from simple to complicated depending on the biology 
and sampling: for example, on whether covariates such as age are mea-
sured accurately, and on whether sampling is lethal (Bravington, Skaug, 
et al., 2016).

Regardless of the specification for Pijk, the ultimate goal of CKMR 
is to make inferences about abundance and demographic parame-
ters given data on observed kinship relationships. The frequency of 
parent–offspring pairs (POPs) often provides information on abun-
dance and fecundity, while HSP frequencies provide information 
about abundance and adult survival. Inference proceeds by maxi-
mizing the pseudolikelihood

where yijk is an observed binary datum indicating whether animals i 
and j were a match for kin relationship k. Here, L is termed a “pseudo-
likelihood” because it treats events as independent when in fact there 
are dependencies; for example, an animal cannot have two mothers. 
However, pseudo-maximum-likelihood estimates are unbiased, and 
variance estimates are accurate when sample sizes are low relative to 
the size of the population (Bravington, Skaug, et al., 2016).

Inference can proceed by minimizing −log
(
L
)
 directly or by 

first incorporating prior distributions (e.g., for survival or fecun-
dity parameters) in the form of additional likelihood components. 
Computation is considerably more efficient if L is first factored to 
rely on sufficient statistics (i.e., by grouping animals with the same 
covariate values).

2.2 | Diagnostics

It is apparent that there are two ways of achieving random kin-
ship samples. One is through “complete mixing,” whereby animals 
move sufficiently so that the expected distance between related 

individuals is equal to that of randomly chosen individuals. In this 
case, it does not matter if sampling is spatially biased, and oppor-
tunistic sampling will work perfectly well for CKMR estimation. 

Pij1=
E[Ri(bj)|zi,zj]
E[R+(bj)|zj]

,

(1)L=
∏
i

∏
j

∏
k

P
yijk

ijk
(1−Pijk)

(1−yijk),

F I G U R E  1   An example of potential information about dispersal 
that can be gained by examining distances between sampled 
kin pairs. In (a), the distribution of kin pair distances is shifted to 
the left from the null distribution of all possible comparisons of 
sampled animals, strongly suggesting incomplete mixing due to 
dispersal limitations. In (b), average distances among kin pairs were 
simulated for the case where both adults and juveniles exhibit 
diffusive dispersal, such that distances tend to increase with both 
offspring age and adult age increment (time since offspring birth). 
In (c), only juveniles were allowed to disperse, so that average 
distances increase initially for young animals, but do not change as 
a function of adult age

(a)

(b)

(c)
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A second way of obtaining random kinship samples is through 
simple random sampling. For instance, if sampling effort is al-
located uniformly throughout a species’ range, and each animal 
has an equal probability of being sampled, then it does not mat-
ter whether there is complete mixing. However, if animals do not 
mix thoroughly and sampling is spatially biased (e.g., through op-
portunistic sampling), animal abundance may be underestimated 
(Davies et al., 2017).

A variety of approaches can be used to assess the mixing as-
sumption, including plotting telemetry data or examining the sam-
pling locations of kinship matches relative to a null distribution of 
comparisons (Hillary et al., 2018). One simple diagnostic test is 
to compare histograms of observed distances (Figure 1a). If the 
distribution of distances for kinship matches is shifted to the left 
of a null distribution of distances between all pairs of animals, it is 
a good indication of lack of mixing. The mixing assumption can be 
formally tested as well, for example, using Kolmogorov–Smirnov 
tests (Hollander, Wolfe, & Chicken, 2013) (see Tests for incom-
plete mixing for an example). Note also that there is additional in-
formation about dispersal that can be gained by examining how 
distances between kin pairs change as a function of offspring age 
or adult age increment (i.e., time since offspring birth). In particu-
lar, observed patterns can be indicative of different types of dis-
persal (Figure 1b,c).

If diagnostic tests reveal that animals mix well, there is little rea-
son to suspect that nonrandom sampling will bias CKMR estimators. 
However, if basic biology or diagnostic tests reveal a lack of mix-
ing, what then? Must CKMR models account for movement in these 
cases to remain unbiased (presumably requiring additional data)? 
Or will CKMR models that ignore space suffice in some situations? 
Through simulation, we study these questions next.

2.3 | Simulation study

2.3.1 | Data generating models

We conducted a simulation study to examine potential bias in CKMR 
estimators when estimating abundance in dispersal-limited popula-
tions. Our data generating and estimation models are built loosely 
on the life history of bearded seals in Alaska (a population we are 
interested in applying CKMR methods to), but should be somewhat 
typical of long-lived mammals subject to a relatively low rate of ex-
ploitation. Our simulations used mortality-at-age estimates derived 
from hierarchical analysis (Trukhanova, Conn, & Boveng, 2018), to-
gether with logistic fecundity-at-age estimates based on data from 
reproductive schedules (London, 2019) (Figure 2). Annual survival 
probability at age (a) followed a 3-parameter reduced additive 
Weibull function (RAW; Choquet, Viiallefont, Rouan, Gaanoun, & 
Gaillard, 2011):

We increased mortality from the original bearded seal estimates 
of Trukhanova et al. (2018) until the expected finite population 
growth rate (Caswell, 2001) was approximately 1.0 to ensure a sta-
ble population (the schedule used in simulations appear in Figure 2). 
For fecundity at age, we used logistic models for each sex (g), param-
eterized as.

where the parameters �g,i were chosen to match bearded seal fecun-
dity-at-age estimates from London (2019). Our motivation for using 
parametric models here was to be able to estimate a manageable 
number of survival and fecundity parameters when analyzing simu-
lated CKMR data. The exact values used are provided in Appendix 
S1.

We simulated population dynamics on a 10 × 10 grid using an 
individual-based modeling approach where parents could only 
mate with individuals in their own cell. Starting with a population 
size of 10,000 distributed randomly across the grid, we simulated 
data for 60 years. Our model employed a postbreeding census 
(sensu Caswell, 2001), with mortality, movement, and breeding 
implemented sequentially. Mortality was simulated via indepen-
dent, uniform draws with probability determined according to the 
curve in Figure 2. Movement was determined by a random draw, 
with �m,n

a , the probability of an age a animal moving from cell m to 
cell n, determined according to one of three simulation scenarios 
(see below). Mating was simulated by first determining whether 
a female breeds, with probability given in Figure 2. For females 
that breed, their mate was determined by selecting an available 
male in the same cell with probability proportional to age-specific 
male fecundity values (Figure 2). Breeding females produced one 
offspring per year.

We considered four dispersal scenarios, corresponding to age-in-
dependent dispersal, juvenile dispersal, no dispersal, or completely 
random movement (such that location in one year is independent of 
location in the previous year). The age-independent dispersal sce-
nario corresponded to the situation where movement probabilities 
were constructed with a Gaussian kernel:

where 
(
d (m,n) ;0,1

)
 gives a standard normal probability density 

function evaluated at d (m,n), the distance between the centroids 
of grid cells m and n (grid cells were defined to have length and 
width = 1.0). The juvenile dispersal scenario used the same kernel for 
a=0, with �m,n

a =0 for a>0.
We implemented four sampling scenarios corresponding to ran-

dom sampling, sampling on a moderate gradient, sampling on an ex-
treme gradient, and sampling on the northern end of the study area 
only (Figure 3). The moderate gradient scenario was configured so 
that the probability of sampling an individual on the northern end 
of the study area was twice as high as on the southern side, with 
a smooth transition in between; in the extreme gradient scenario, Sa=exp

(
−(�1a)

�2 − (�1a)
1∕�2 −�3a

)
.

fa,g=
[
1+exp

(
−�g,1 ∗

(
a−�g,2

))]−1
,

�
m,n
a ∝

(
d (m,n) ;0,1

)
,
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there was a 10-fold variation in sampling probability. Simulations 
were initialized using a stable age distribution and assuming virtual 
animals were uniformly distributed among grid cells. We ran simu-
lations for 60 years, with sampling configured to occur over the last 
20 years of each time series, with n=100 newly dead animals sam-
pled per year, mimicking the situation where genetic samples are 
obtained from hunter- or angler-killed animals. The duration and in-
tensity of sampling were selected to be roughly similar to those avail-
able from indigenously harvested bearded seals in Alaska (B. Taras 
and L. Quakenbush, Alaska Dept. of Fish & Game, unpublished data). 
We selected the 60-year simulation time frame to eliminate “founder 
effects”—virtual animals initialized at the beginning of the study had 
a negligible probability of surviving to the period when sampling 
began. For each simulation scenario, we simulated 100 data sets.

2.3.2 | Estimation

We analyzed each simulated CKMR data set with a naive CKMR 
model (i.e., assuming no spatial structure). We simultaneously mod-
eled mother–offspring, father–offspring, maternal half-sibling, and 
paternal half-sibling pairs within a joint likelihood. We did not model 
full-sibling pairs as the frequency of these occurring in nature is 
often quite low in mating systems without pair bonding. To calculate 
the probability of each kinship relationship, we embedded a deter-
ministic population dynamics model into the pseudolikelihood. We 
attempted to estimate abundance, age-specific survival, and fecun-
dity-at-age, with informative prior distributions on survival and fe-
cundity parameters (see below).

To formalize the population dynamics model, let Na,t,g gives the 
expected number of animals that are age a (a∈

{
0,1,⋯ ,37

}
) and sex 

g (g=1 for females and g=2 for males) in year t, t∈
{
1,2,⋯ ,60

}
. 

Assuming new recruits are 50% female, we set N0,1,g=exp
(
R0

)
, 

where R0 is an estimated parameter. We assume a stable age struc-
ture at beginning of the time series with Na+1,1,g=Na,1,gSa, Sa being 
survival of age class a (assumed here to be independent of sex and 
year). For later years, survival was modeled as Na+1,t,g=Na,t−1,gSa for 
2≤ t≤50 and 0≤a≤36. The probability of surviving past age 37 was 
negligible, so we did not model later age classes. Recruitment for 
t>0 was modeled by applying the female-specific fecundity-at-age 
vector (fa,1) from Figure 2, specifically N0,t,g=0.5

∑
a

Na,t,1fa,1.

Given that we used a postbreeding census, we calculated the 
probability of POPs as the ratio of the prospective parent's expected 
reproductive output in the year prior to the offspring's birth rela-
tive to the total reproductive output then. To speed computation, 
we found it useful to summarize kinship probabilities according to 
sufficient statistics. Defining Pb1,y1,b2,g to be the probability of a POP 
for comparisons that have parent birth year b1, parent capture year 
y1, offspring birth year b2, and parent sex g, we have

Probabilities of HSPs are slightly more complicated, as we must 
integrate (sum) over possible ages of the parent. In this case, we sum-
marize probabilities as P′

b1,b2,g
, where b1 and b2 in this case are birth 

years of the older and younger sibling, respectively:

We assume that the sex (g) of the shared parent in half-sibling 
matches is known, as can often be determined if there is sufficient 
mitochondrial haplotype diversity. Note that an equivalent form of 
equation (2) also appears in Hillary et al. (2018) (Online supplement, 
page 19).

Using a Poisson approximation to the binomial distribution, we 
write the negative joint log pseudolikelihood for the naive CKMR 
model as

Here, n gives the number of pairwise comparisons made of a 
given type from the sampled set of individuals, and m gives the 
number of matches of a particular type. Symbols with a prime de-
note HSP comparisons, while those without denote POP compar-
isons. Note that we omitted POP comparisons for the case where 
the death year of the parent occurred in the year of a potential 
offspring's birth, as well as HSP comparisons for the case where 
individuals are the same age. These restrictions can be important 
in real-world applications to prevent bias arising from dependent 
fates.

We also include Gaussian prior distributions on reduced additive 
Weibull (RAW) survival parameters and logistic fecundity parame-
ters. For survival, 

(
�̃�i;𝜂i,𝜎

2
i

)
 denotes a Gaussian prior on the i th 

log-scale RAW parameter, �̃�i, with mean �i and standard deviation �i. 
Here �i was set to the values used to generate data, and �i values 
were determined subjectively by plotting RAW curves with different 
parameter values until a RAW model with �i±2�i appeared implausi-
ble (see Appendix S1 for values used). Similarly, for fecundity param-

eters, 
(
�̃�g,i;𝜈g,i,𝜏

2
g,i

)
 denotes a Gaussian prior on the i th logistic 

parameter for gender g. In this case, the mean �g,i was set to the data 
generating values and �g,i was set such to 0.4�g,i (corresponding to a 
CV of 0.4).

For each scenario, we calculated mean proportional relative bias 
of abundance, and plotted true and estimated survival and fecun-
dity schedules. Bias of the CKMR abundance estimator was sum-
marized by averaging true and estimated abundance over the final 
20 years of each simulation (the years of sampling). To compute 

Pb1,y1,b2,g=

⎧
⎪⎨⎪⎩

fb2−b1−1,g∑
a Na,b2 ,g

fa−1,g
ify1≥b2,b1<y1≤

�
b1+37

�
, andb2≤

�
b1+37

�

0 otherwise

⎫
⎪⎬⎪⎭

(2)P�
b1,b2,g

=
�
a

Na,b1,g

fa−1,g∑
a� Na�,b1,g

fa�−1,g

⎛
⎜⎜⎝

b2−1�
y=b1

Sa+y−b1

⎞
⎟⎟⎠

fa+b2−b1−1,g∑
a� Na�,b2,g

fa�−1,g

Λ=
∑
b1

∑
y1

∑
b2

∑
g

mb1,y1,b2,g
log

(
nb1,y1,b2,gPb1,y1,b2,g

)
−nb1,y1,b2,gPb1,y1,b2,g+

∑
b1

∑
b2

∑
g

m�
b1,b2,g

log
(
n�
b1,b2,g

P�
b1,b2,g

)
−n�

b1,b2,g
P�
b1,b2,g

−

3∑
i=1

log
(


(
�̃�i;𝜂i,𝜎

2
i

))
−

2∑
i=1

2∑
g=1

log
(


(
�̃�g,i;𝜈g,i,𝜏

2
g,i

))
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true and estimated abundance, we summed totals of subadults and 
adults (ages 2+). In general, CKMR does not provide information 
about abundance of reproductively immature animals, although in 
our model the structure of the assumed population model allows 
predictions of younger age classes.

2.3.3 | Tests for incomplete mixing

To examine the ability of Kolmogorov–Smirnov tests to diagnose 
incomplete mixing, we ran additional simulations. Populations were 
simulated as in the previous section with the same combination of 
sampling and dispersal scenarios. However, we varied the intensity 
of sampling, examining cases where 15, 25, or 100 genetic sam-
ples were obtained per year (we term these “low”, “medium,” and 
“high” sampling intensities, respectively). These levels correspond to 
roughly 0.15%, 0.25%, and 1.0% of the population. For each case, 
we examined whether Kolmogorov–Smirnov tests could diagnose 
differences in the distribution of distances between HSPs and POPs 
from a null distribution of all possible comparisons. Since dispersal 
was configured to occur between years, we removed comparisons 

of distances that occurred (a) in the same year and (b) in the year of 
birth for one of the individuals.

2.3.4 | Computing

We simulated CKMR data in the R programming environment 
(R Development Core Team, 2017), using the fishsim package 
(Baylis, 2019) to simulate population dynamics, writing additional R 
functions to implement different movement scenarios and sample 
individuals (assumed to be dead from harvest). Estimation was per-
formed by minimizing joint negative log pseudolikelihoods with the 
nlminb function with respect to the parameter vector �. Estimated 
parameters consisted of 𝜃=

{
R0,�̃�1,�̃�2,�̃�3,�̃�1,1,�̃�1,2,�̃�2,1,�̃�2,2

}
. Abundance 

and adult survival could be computed as functions of estimated pa-
rameters given the population dynamics model. We coded the log-
likelihood in C++ and linked it to R via the ADT package (available 
at https://github.com/pjump panen /ADT) which allows automatic dif-
ferentiation from Tapenade libraries (Hascoet & Pascual, 2013). The 
C++ and R code have been permanently archived in a publicly avail-
able repository (Conn, 2020).

F I G U R E  2   Age-specific survival and reproductive schedules used to simulate CKMR data. Reproductive schedules were provided as a 
fixed input to the estimation models, whereas prior distributions on reduced additive Weibull parameters were provided for survival. CKMR, 
close-kin mark–recapture

https://github.com/pjumppanen/ADT
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3  | RESULTS

For abundance, proportional relative bias was approximately 2% 
for scenarios where model assumptions were met (either complete 
mixing or constant sampling probabilities; Figure 4). For incom-
plete mixing (dispersal limitation) under a moderate sampling gra-
dient, abundance was negatively biased by 1%–2% depending on 
scenario. The extreme sampling gradient and spatially restricted 
sampling scenarios were considerably negatively biased under 
dispersal limitation (12%–19% and 60%–73%, respectively). In 
general, greater mixing resulted in less bias for dispersal-limited 
scenarios (Figure 4).

Survival was reasonably unbiased at younger ages (<15) for all 
scenarios except for one (Figure 5). When sampling was spatially 
restricted and dispersal was age-independent, cumulative survival 
from ages 4 to 10 was underestimated by 15%. Presumably, this is 
because adults can emigrate away from the sampled area, and the 
CKMR model is unable to differentiate such emigration from mortal-
ity. Interestingly, there appeared to be a negative bias in survival at 
older age for all scenarios (e.g., >20), though there are admittedly few 
individuals reaching this age range (approximately 2% of the popula-
tion). Ratios of Hessian-based posterior standard errors to standard 
deviations of Bayesian prior distributions provide one indication of 
whether CKMR data provide information about parameters relative 
to model inputs. Ratios substantially less than 1.0 suggest that kin-
ship data provide increased inference relative to prior assumptions, 
while ratios near 1.0 suggest that prior distributions are driving in-
ferences. For survival, reduced additive Weibull survival parameters 
(�̃�1,�̃�2,�̃�3) were all less than 1.0 (0.47, 0.81, and 0.37, respectively), 
indicating that CKMR data aided in their estimation. Note, however, 
that CKMR provides no information about survival of animals be-
fore they reach reproductive maturity; estimates for these ages are 

entirely a function of prior distributions and the assumed functional 
form of the survival curve.

Reproductive schedules were all unbiasedly estimated (Figure 6) 
regardless of simulation scenario. Ratios of Hessian-based posterior 
standard errors to prior standard deviations of logistic fecundity 
parameters (�̃�1,1,�̃�1,2,�̃�2,1,�̃�2,2) were 0.79, 0.83, 1.17, and 0.76. These 
ratios are relatively close to 1.0, suggesting estimation of fecundity 
parameters may rely more heavily on prior distributions than survival 
parameters, especially for the slope of the male fecundity curve.

Kolmogorov–Smirnov tests had high power to discriminate non-
mixing of related individuals (Figure 7) for all cases except for POPs 
under low sampling intensity. For reference, the mean number of 
POPs for low, medium, and high sampling intensities was 5, 13, and 
204, respectively. The mean number of HSPs for these scenarios 
was 21, 58, and 921.

4  | DISCUSSION

In this paper, we examined whether CKMR can be an effective 
strategy for estimating animal abundance and demographic param-
eters when there is incomplete mixing of animals and sampling is 
spatially biased. When combined, these two conditions can poten-
tially bias CKMR estimators because they can alter the frequency 
of kin-pair matches from what one would expect in a randomly 
sampled population. Under the range of conditions simulated here, 
we have shown that abundance estimators from CKMR are reason-
ably robust to moderate variation in sampling effort under disper-
sal limitation, such as when effort is along a gradient varying by a 
factor of two. However, care should be taken when effort varies 
more dramatically (e.g., along a gradient with 10-fold variation in 
sampling probabilities) or when there are areas that are unsampled. 

F I G U R E  3   Different sampling 
scenarios for simulation study, 
corresponding to spatially uniform 
sampling (a), a moderate gradient in 
sampling probabilities (b), an extreme 
gradient in sampling probabilities (c), 
and spatially restricted sampling, where 
sampling only occurs near the north edge 
of the study area (d). Values represent 
the relative probability of sampling an 
individual in a given cell compared to the 
cell(s) with the highest probability

(a)

(c)

(b)

(d)
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Survival and fecundity were more robust, with fecundity schedules 
reasonably estimated in all scenarios and adult survival only appre-
ciably biased when it was possible for adults to emigrate out of the 
sampled area. As we might expect, CKMR only appears capable of 
estimating “apparent survival,” as with Cormack–Jolly–Seber mod-
els applied to conventional mark–recapture data (Williams, Nichols, 
& Conroy, 2002).

Fortunately, Kolmogorov–Smirnov tests reliably detected incom-
plete mixing even with relatively low sample sizes (e.g., with 25 ani-
mals genotyped per year; 0.25% of the population). Note, however, 
that the sample size required to get a sufficient number of kin pairs 
scales with the square root of abundance, so that increased sam-
pling will be necessary to achieve similar power in larger populations 
than the 10,000 animals considered here. Even then, low p-values 
do not by themselves indicate the likely level of bias. If sampling is 
spatially uniform, for instance, bias is still negligible; if sampling is 
opportunistic and concentrated in certain areas, bias may be con-
siderable (Figure 4). If incomplete mixing is detected, we suggest 
that researchers conduct simulations tailored to their populations' 

dispersal and sampling dynamics to investigate possible levels of 
bias, and if necessary, construct spatially explicit CKMR models for 
estimation (see below). Another approach (suggested by a reviewer) 
would be to conduct diagnostics based on different age increments, 
with the hope that spatial dependence decreases with time since the 
year of birth (as in Figure 1). If such a relationship is found, inference 
could proceed using HSP or POPs where comparisons are limited to 
longer age increments. Although this approach would require higher 
sample sizes (both to detect incomplete mixing and to achieve ade-
quate precision), it may be a way to reduce bias.

In this study, we limited consideration of models to those that 
were reasonably simple. This was for clarity, for ease of program-
ming, and to limit computation time. Practical models for real 
populations will often need to address complications such as ge-
notyping error and ageing error, which necessitate more intricate 
mathematics (Bravington, Skaug, et al., 2016). For instance, we as-
sumed that kinship relationships were known perfectly. This is often 
a reasonable assumption for POPs, but more complex models will 
often be needed for HSPs because of false positives and because 

F I G U R E  4   Proportional bias in abundance estimates as a function of dispersal type and sampling scenario. Possible dispersal types 
included complete mixing, age-independent dispersal, juvenile-biased dispersal, and no dispersal. Sampling scenarios included random 
sampling of dead animals irrespective of location (“Spatially uniform"), moderate or extreme gradients in sampling, or sampling that 
was restricted to the northern edge of each habitat grid (“Spatially restricted”). Each boxplot summarizes proportional bias in estimated 
abundance over 100 simulated data sets. Little to no bias was realized under complete mixing or under spatially uniform or moderate 
gradients in sampling probability. However, abundance was biased low under dispersal limitation when either an extreme gradient or 
spatially restricted sampling was simulated
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parental- and maternal-half-siblings may be difficult to discriminate 
in populations with low mitochondrial haplotype diversity. We sus-
pect that biases for more sophisticated models will be similar to 
those estimated here, though precision will be reduced due to re-
duced sample sizes and/or an increased number of parameters.

As with all simulation studies, care should be taken not to extrapo-
late our findings to systems that are markedly different from the ones 
that we implemented here. Our simulations were geared toward long-
lived mammals with a relatively low rate of exploitation. Consequences 
of spatial structure on estimator bias are likely to vary from case to 
case. For instance, Davies et al. (2017) investigated consequences of 
ignoring spatial structure when sampling Atlantic bluefin tuna popula-
tions that were structured into several stocks with different spawning 
and nursery grounds. In their case, they found that estimates of abun-
dance could be severely biased if spatial structure was not explicitly 

accounted for within CKMR models. It thus seems prudent to con-
duct CKMR scoping studies that are specifically tailored to the biology 
and sampling specifics of the individual population being investigated. 
Fortunately, tools we have described here (e.g., individual-based simu-
lation) should aid in exploring assumption violations.

In addition to simulation testing of naive CKMR models, it may 
be worth developing spatially structured CKMR models that explic-
itly allow movement. This might be particularly useful for populations 
where there is low mixing (which we have shown can be readily de-
tected with reasonable sample sizes) coupled with strong spatial bias 
in sampling: for example, if samples are obtained by hunters or fishers 
that target areas preferentially owing to ease of access or perceived 
animal density. Such models would include spatial location of cap-
ture as an additional covariate, integrating over possible birth loca-
tions (Bravington, Skaug, et al., 2016, section 3.1.5) . However, such 

F I G U R E  5   Age-specific survival estimates for CKMR simulations by sampling (columns) and dispersal (rows) scenario. Thin gray lines 
represent estimates from individual simulation runs, while thick black lines represent means of all simulation replicates. Thick red lines 
represent values used to simulate data. If survival is recaptured perfectly, the dark red and dark black lines should overlap completely. 
Survival appears to be underestimated in older age classes in all scenarios, but at ages where there were few data (<2% of populations were 
over age 20). More concerning was when spatially restricted sampling was employed and adults dispersed out of the sampled populations 
(“All ages dispersal”). Here, adult survival is considerably underestimated, presumably because of permanent emigration
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models would also need to account for spatial structure in relative 
reproductive output, which would in turn require a model for how 
abundance varies over space. It could be difficult to fit such a model to 
CKMR data alone when the observed number of kinship pairs is small 
(e.g., <50). In such cases, auxiliary data may be needed. For instance, 
coupling CKMR with a spatially explicit relative abundance index or 
with utilization distributions estimated from telemetered animals could 
provide the information needed to make estimation effective. Such 
models will also likely require extra assumptions, such as spatial ho-
mogeneity in population trend and temporal homogeneity in detection 
probability. However, there is clearly information in kinship patterns 
that can be exploited to estimate movement and migration rates (Bode, 
Williamson, Harrison, Outram, & Jones, 2018; Wang, 2014), informa-
tion that could potentially be used in future CKMR models.

5  | CONCLUSION

Close-kin mark–recapture is in its infancy, and like traditional mark–
recapture we foresee a radiating period of growth where models 
are developed to overcome obstacles, software is made more user-
friendly for ecologists, and ultimately CKMR is applied to monitor 
and manage a greater number of species. As enthusiastic as we are 
about its strengths, we think it important for ecologists to also un-
derstand its limitations. Incomplete mixing coupled with spatially 
biased sampling is certainly an important case, but there are a large 
number of other assumption violations (e.g., nonindependence of 
fates, alternate mating systems, heterogeneity in detection, trait-
based harvesting) that will need to be examined on a case-by-case 
basis.

F I G U R E  6   Age-specific fecundity estimates for CKMR simulations by sampling (columns) and dispersal (rows) scenario. Thin orange and 
thin blue lines represent estimates from individual simulation runs for females and males, respectively, while dashed black lines are fecundity 
estimates averaged over all simulation replicates. Solid black lines represent values used to simulate data. Reproductive schedules were all 
unbiasedly estimated regardless of simulation scenario. CKMR, close-kin mark–recapture
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